Optimal Solver for Morley Element Discretization of Biharmonic Equation on Shape-regular Grids
نویسندگان
چکیده
This paper presents an optimal solver for the Morley element problem for the boundaryvalue problem of the biharmonic equation by decomposing it into several subproblems and solving these subproblems optimally. The optimality of the proposed method is mathematically proved for general shape-regular grids. Mathematics subject classification: 65F08, 65N30, 65N99
منابع مشابه
The Morley element for fourth order elliptic equations in any dimensions
In this paper, the well-known nonconforming Morley element for biharmonic equations in two spatial dimensions is extended to any higher dimensions in a canonical fashion. The general -dimensional Morley element consists of all quadratic polynomials defined on each -simplex with degrees of freedom given by the integral average of the normal derivative on each -subsimplex and the integral average...
متن کاملAdaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation
An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...
متن کاملAdaptive Morley element algorithms for the biharmonic eigenvalue problem
This paper is devoted to the adaptive Morley element algorithms for a biharmonic eigenvalue problem in [Formula: see text] ([Formula: see text]). We combine the Morley element method with the shifted-inverse iteration including Rayleigh quotient iteration and the inverse iteration with fixed shift to propose multigrid discretization schemes in an adaptive fashion. We establish an inequality on ...
متن کاملA two-level additive Schwarz method for the Morley nonconforming element approximation of a nonlinear biharmonic equation
In this paper, we consider the well known Morley nonconforming element approximation of a nonlinear biharmonic equation which is related to the well-known two-dimensional Navier–Stokes equations. Firstly, optimal energy and H1-norm estimates are obtained. Secondly, a two-level additive Schwarz method is presented for the discrete nonlinear algebraic system. It is shown that if the Reynolds numb...
متن کاملRobust multigrid preconditioners for the high-contrast biharmonic plate equation
We study the high-contrast biharmonic plate equation with HCT and Morley discretizations. We construct a preconditioner that is robust with respect to contrast size and mesh size simultaneously based on the preconditioner proposed by Aksoylu et al. (2008, Comput. Vis. Sci. 11, pp. 319–331). By extending the devised singular perturbation analysis from linear finite element discretization to the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016